This protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With suspected asthma</td>
<td>• Measurement of fractional exhaled nitric oxide</td>
<td>• Standard clinical diagnosis</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With suspected eosinophilic asthma</td>
<td>• Measurement of fractional exhaled nitric oxide</td>
<td>• Sputum eosinophil measurement</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With asthma</td>
<td>• Medication management directed by fractional exhaled nitric oxide</td>
<td>• Standard clinical management</td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With suspected or confirmed respiratory disorders other than asthma</td>
<td>• Measurement of fractional exhaled nitric oxide</td>
<td>• Standard clinical diagnosis and management</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Change in disease status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
</tbody>
</table>
Protocol: Measurement of Exhaled Nitric Oxide and Exhaled Breath Condensate in the Diagnosis and Management of Respiratory Disorders

Last Review Date: 03/17

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With suspected or confirmed respiratory disorders</td>
<td>Interventions of interest are: • Measurement of exhaled breath condensate</td>
<td>Comparators of interest are: • Standard clinical diagnosis and management</td>
<td>Relevant outcomes include: • Test accuracy • Test validity • Symptoms • Change in disease status • Morbid events • Functional outcomes</td>
</tr>
</tbody>
</table>

Description

Evaluation of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) are proposed as techniques to diagnose and monitor asthma and other respiratory conditions. There are commercially available devices for measuring NO in expired breath and various laboratory techniques for evaluating components of EBC.

Summary of Evidence

For individuals who have suspected asthma or suspected eosinophilic asthma who receive measurement of fractional exhaled nitric oxide (FeNO), the evidence includes multiple retrospective and prospective studies of diagnostic accuracy, along with systematic reviews of those studies. Relevant outcomes are test accuracy and validity, symptoms, change in disease status, morbid events, and functional outcomes. There is a large volume of reports on the sensitivity and specificity of FeNO in asthma diagnosis. The available evidence is limited by the use of wide variability in FeNO cutoff levels used to diagnose asthma and wide variability in sensitivity and specificity for asthma diagnosis. The accuracy of the cutoffs recommended by the American Thoracic Society guidelines has not been evaluated in the diagnosis of asthma. In addition, no studies were identified that evaluated whether use of FeNO improved the accuracy of asthma diagnosis compared with clinical diagnosis. For use of FeNO in the diagnosis of eosinophilic asthma, using the criterion standard of sputum eosinophilia, the diagnostic accuracy is moderate. The evidence is insufficient to determine the effect of the technology on health outcomes.

For individuals who have asthma and who receive medication management directed by FeNO, the evidence includes multiple randomized controlled trials (RCTs). Relevant outcomes are symptoms, change in disease status, morbid events, and functional outcomes. The available RCTs evaluating the use of FeNO tests for the management of patients have not consistently found improvement in health outcomes. A 2012 meta-analysis of six RCTs did not find significantly improved outcomes (e.g., a lower rate of asthma exacerbations, lower symptom scores) when medication dose was tailored to FeNO level. By contrast, a subsequent meta-analysis found statistically significant reductions in asthma exacerbations in patients managed with FeNO measurements. RCTs in various populations published since 2012 have had mixed findings. An additional RCT that demonstrated improvements in asthma control with a FeNO-based management approach compared clinical management targeting “partial control,” although not with a clinical management approach targeting complete control. Some available evidence suggests that a FeNO-based algorithm for adjusting inhaled corticosteroid doses may be associated with modest improvements in asthma exacerbations, but additional studies are needed. The evidence is insufficient to determine the effect of the technology on health outcomes.

For individuals who have suspected or confirmed respiratory disorders other than asthma who receive measurement of measurement of FeNO, the evidence includes one crossover trial and observational studies. Relevant outcomes are test accuracy and validity, symptoms, change in disease status, morbid events, and functional outcomes. The available evidence for the use of FeNO for respiratory disorders other than asthma is limited by...
heterogeneity in the conditions evaluated and uncertainty about the potential clinical use. The evidence is insufficient to determine the effect of the technology on health outcomes.

For individuals who have suspected or confirmed respiratory disorders who receive measurement of EBC, the evidence includes observational studies reporting on the association between various EBC components and disease severity. Relevant outcomes are test accuracy and validity, symptoms, change in disease status, morbid events, and functional outcomes. There is considerable variability in the particular EBC components measured and criteria for standardized measurements. The evidence is insufficient to determine the effect of the technology on health outcomes.

Policy

Measurement of exhaled nitric oxide is considered investigational in the diagnosis and management of asthma and other respiratory disorders including but not limited to chronic obstructive pulmonary disease and chronic cough.

Measurement of exhaled breath condensate is considered investigational in the diagnosis and management of asthma and other respiratory disorders including but not limited to chronic obstructive pulmonary disease and chronic cough.

Background

Asthma Overview

Asthma is characterized by airway inflammation that leads to airway obstruction and hyperresponsiveness, which in turn lead to characteristic clinical symptoms including wheezing, shortness of breath, cough, and chest tightness. Guidelines for the management of persistent asthma stress the importance of long-term suppression of inflammation using steroids, leukotriene inhibitors, or other anti-inflammatory drugs. Existing techniques for monitoring the status of underlying inflammation have focused on bronchoscopy, with lavage and biopsy, or analysis by induced sputum. Given the cumbersome nature of these techniques, the ongoing assessment of asthma focuses not on the status of the underlying chronic inflammation, but rather on regular assessments of respiratory parameters such as forced expiratory volume in one second and peak flow. Therefore, there has been interest in noninvasive techniques to assess the underlying pathogenic chronic inflammation as reflected by measurements of inflammatory mediators.

Fractional Exhaled Nitric Oxide and Exhaled Breath Condensate

Two proposed strategies are the measurement of FeNO and the evaluation of EBC. Nitric oxide (NO) is an important endogenous messenger and inflammatory mediator that is widespread in the human body, functioning, e.g., to regulate peripheral blood flow, platelet function, immune reactions, and neurotransmission and to mediate inflammation. While the role of NO in asthma pathogenesis is still under investigation, patients with asthma have been found to have high levels of FeNO, which decreases with treatment with corticosteroids. In biologic tissues, NO is unstable, limiting measurement. However, in the gas phase, NO is fairly stable, permitting its measurement in exhaled air. FeNO is typically measured during single breath exhalations. First, the subject inspires NO-free air via a mouthpiece until total lung capacity is achieved, followed immediately by exhalation through the mouthpiece into the measuring device. Several devices measuring FeNO are commercially available in the United States. According to a 2009 joint statement by the American Thoracic Society and European Respiratory Society, there is consensus that the fractional concentration of FeNO is best measured at an exhaled rate of 50 mL per second maintained within 10% for more than six seconds at an oral pressure between five and
20 cm H2O.1 Results are expressed as the NO concentration in parts per billion, based on the mean of two or three values.

EBC consists of exhaled air passed through a condensing or cooling apparatus, resulting in an accumulation of fluid. Although EBC is primarily derived from water vapor, it also contains aerosol particles or respiratory fluid droplets, which in turn contain various nonvolatile inflammatory mediators, such as cytokines, leukotrienes, oxidants, antioxidants, and other markers of oxidative stress. There are a variety of laboratory techniques to measure the components of EBC, including such simple techniques as pH measurement and the more sophisticated gas chromatography/mass spectrometry or high-performance liquid chromatography, depending on the component of interest.

\textit{Clinical Uses of FeNO and EBC}

Measurements of FeNO have particularly been associated with an eosinophilic asthma phenotype. Eosinophilic asthma is a subtype of severe asthma associated with sputum and serum eosinophilia, along with later-onset asthma.2 Until recently, most asthma management strategies did not depend on the recognition or diagnosis of a particular subtype. However, two anti-interleukin 5 inhibitors have been approved by the Food and Drug Administration (FDA) for the treatment of severe asthma with an eosinophilic phenotype, mepolizumab3 and reslizumab.4

A 2015 Cochrane review compared the evidence for mepolizumab and placebo for asthma.5 The review included eight studies (total N=1707 patients). One randomized controlled trial (RCT) used FeNO as one potential criterion for eosinophilic asthma (Pavord et al, 2012).6 In another RCT, the criteria for eosinophilic asthma was a prior diagnosis of eosinophilic asthma or evidence of eosinophilic inflammation, but criteria for the diagnosis are not provided (Ortega et al, 2014).7 Overall, the Cochrane review concluded: “It is not possible to draw firm conclusions from this review with respect to the role of mepolizumab in patients with asthma. Our confidence in the results of this review are limited by the fact that the intravenous route is not currently licensed for mepolizumab, and the evidence for the currently licensed subcutaneous route is limited to a single study in participants with severe eosinophilic asthma.”

Measurement of NO and EBC has been investigated in the diagnosis and management of asthma. Potential uses in management of asthma include assessing response to anti-inflammatory treatment, monitoring compliance with treatment, and predicting exacerbations. Aside from asthma, they have also been proposed in the management of patients with chronic obstructive pulmonary disease, cystic fibrosis, allergic rhinitis, pulmonary hypertension, and primary ciliary dyskinesia.

\textit{Regulatory Status}

In 2003, the Nitric Oxide Monitoring System (NIOX®; Aerocrine, Sweden; acquired by Circassia Pharmaceuticals, Oxford, U.K.) was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for the following indication:

“[Measurements of the fractional nitric oxide (NO) concentration in expired breath (FE-NO)] provide the physician with means of evaluating an asthma patient’s response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments in asthma. NIOX should only be used by trained physicians, nurses and laboratory technicians. NIOX cannot be used with infants or by children approximately under the age of four, as measurement requires patient cooperation. NIOX should not be used in critical care, emergency care or in anesthesiology.”
In March 2008, the NIOX MINO® was cleared for marketing by FDA through the 510(k) process. The main differences between this new device and the NIOX® are that the NIOX MINO® is handheld, portable, and not suitable for children younger than age seven years. In November 2014, the NIOX VERO®, which differs from predicate devices in terms of its battery and display format, was also cleared for marketing by FDA through the 510(k) process. FDA product code: MXA.

The RTube™ Exhaled Breath Condensate collection system (Respiratory Research) and the ECoScreen EBC collection system (CareFusion, Germany) are registered with FDA as class I devices that collect expired gas. Respiratory Research has a proprietary gas-standardized pH assay, which, when performed by the company, is considered a laboratory-developed test.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

28. Schneider A, Tilemann L, Schermer T, et al. Diagnosing asthma in general practice with portable exhaled nitric oxide measurement—results of a prospective diagnostic study: FENO < or = 16 ppb better than FENO < or = 12 ppb to rule out mild and moderate to severe asthma [added]. Respir Res. 2009; 10:15. PMID 19254389
49. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Exhaled nitric oxide monitoring as a guide to treatment decisions in chronic asthma. TEC Assessments. 2005; Volume 20, Tab 17.
66. O’Connor GT, Reibman J. Inhaled corticosteroid dose adjustment in mild persistent asthma. JAMA. Sep 12 2012; 308(10):1036-1037. PMID 2296893
84. Keskin O, Balaban S, Keskin M, et al. Relationship between exhaled leukotriene and 8-isoprostane levels and asthma severity, asthma control level, and asthma control test score. Allergol Immunopathol (Madr). May-Jun 2014; 42(3):191-197. PMID 23265270